Energy Conversion and Management, cilt.42, sa.9, ss.1085-1093, 2001 (SCI-Expanded)
A new kind of finite time thermoeconomic optimization analysis for an endoreversible heat engine has been performed. The objective function has been taken as the power output per unit total cost. The optimum performance parameters that maximize the objective function are investigated. In this perspective, some analytical equations for the optimum working fluid temperatures, optimum thermal efficiency, optimal distributions of heat exchanger areas and optimum specific power output were found in terms of economical and technical parameters. The effects of the design parameters on the optimal conditions have been discussed.