Investigation of the Mechanical, Microstructure and 3D Fractal Analysis of Nanocalcite-Modified Environmentally Friendly and Sustainable Cementitious Composites


Creative Commons License

Ziada M., Tammam Y. M., ERDEM S., Lezcano R. A. G.

Buildings, cilt.12, sa.1, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/buildings12010036
  • Dergi Adı: Buildings
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, Applied Science & Technology Source, Avery, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: nanocalcite, environmentally friendly cementitious composite, mechanical properties, microstructure analysis, 3D fractal analysis, sustainability, fly ash
  • İstanbul Gelişim Üniversitesi Adresli: Hayır

Özet

Unlike conventional concrete materials, Engineered Cementitious Composites (ECC) use a micromechanics-based design theory in the material design process. Recently, the use of nanoparticles in various concretes and mortars has increased. This study used nanocalcite to investigate the mechanical, microstructural fractal analysis of environmentally friendly nanocalcite-doped ECC (NCa-ECC). This paper investigated the effects of nanocalcite (NCa) with different contents (0.5, 1, and 1.5% by mass of binder) on the mechanical properties of engineered cementitious composites (ECC). For this purpose, compressive strength, ultrasonic pulse velocity (UPV), and flexural strength tests were conducted to investigate the mechanical properties of the ECC series. In addition, SEM analyses were carried out to investigate the microstructural properties of the ECC series. The content of nanocalcite improved the mechanical and microstructural properties of the nanocalcite-modified ECC series. In addition, the 1 NCa series (1% nanocalcite modified to the mass of the binder) had the best performance among the series used in this study.