Meccanica, cilt.49, sa.10, ss.2491-2502, 2014 (SCI-Expanded)
This paper is the result of an investigation on the vibration of non-homogeneous orthotropic cylindrical shells, based on the shear deformation theory. Assume that the Young's moduli, shear moduli and density of the orthotropic material are continuous functions of the coordinate in the thickness direction. The basic equations of non-homogeneous orthotropic cylindrical shells with the shear deformation and rotary inertia are derived in the framework of Donnell-type shell theory. The ends of a non-homogeneous orthotropic cylindrical shell are considered as simply supported. The basic equations are reduced to the sixth-order algebraic equation for the frequency using the Galerkin method. Solving this algebraic equation, the lowest values of non-dimensional frequency parameters for non-homogeneous orthotropic cylindrical shells with and without shear deformation and rotary inertia are obtained. Calculations, effects of shear stresses and rotary inertia, orthotropy, non-homogeneity and shell geometry parameters on the lowest values of non-dimensional frequency parameter are described. The results are verified by comparing the obtained values with those in the existing literature. © 2014 Springer Science+Business Media Dordrecht.