A new Monte Carlo method for solving system of linear algebraic equations


Fathi-Vajargah B., Hassanzadeh Z.

Computational Methods for Differential Equations, cilt.9, sa.1, ss.159-179, 2021 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.22034/cmde.2020.30640.1453
  • Dergi Adı: Computational Methods for Differential Equations
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.159-179
  • Anahtar Kelimeler: Ergodic Markov chain, Monte Carlo method, Spectral radius, System of linear algebraic equations, Transition probability matrix
  • İstanbul Gelişim Üniversitesi Adresli: Hayır

Özet

In this paper, we firstly study the employing of the Monte Carlo method for solving system of linear algebraic equations and then analyze on convergence of this method. We propound new results related to the convergence of the Monte Carlo method. Additionally, we introduce a new Monte Carlo algorithm with effective techniques. Finally, we compare the efficiency of new Monte Carlo algorithm with its old version in the numerical experiments.