A study on the electrical and dielectric properties of SrGd xFe12−xO19 (x = 0.00–0.05) nanosized M-type hexagonal ferrites


ÜNAL B., Almessiere M., Slimani Y., Demir Korkmaz A., Baykal A.

Journal of Materials Science: Materials in Electronics, cilt.32, sa.13, ss.18317-18329, 2021 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 13
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s10854-021-06373-9
  • Dergi Adı: Journal of Materials Science: Materials in Electronics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.18317-18329
  • İstanbul Gelişim Üniversitesi Adresli: Evet

Özet

Single-phase SrGdxFe12−xO19 (x = 0.00–0.05) nanosized M-type hexagonal ferrites (NHFs) were prepared via citrate sol–gel route. The formation of Gd substituted Sr-hexaferrites has been confirmed by XRD, SEM, TEM and EDX for all substitutions. The X-ray powder patterns revealed the hexagonal crystal structure of all products. The electrical and dielectric properties of SrGdxFe12−xO19 NHFs were investigated extensively with an impedance spectroscopy up to 3.0 MHz from 20 to 120 °C. Both electrical and dielectric components including ac/dc conductivity, dielectric constant, dielectric loss and lossy tangent were evaluated for measurement temperatures up to 120 °C. It has been indicated that ac conductivity generally complies with power law rules, mainly dependent on Gd3+-ion substitution ratios. The impedance analysis showed that due to the influence of various Gd3+-ion substitution ratios in the NHFs, the conduction mechanisms can mainly be attributed to the grain-grain boundaries. The dielectric constant of SrGdxFe12−xO19 NHFs owns a normal dielectric distribution with the frequency, largely due to varying substitution ratios. In other words, the variation of Gd3+-ion substitution can be used to modify the conduction mechanism of NHFs. Therefore, the observed change in dielectric properties as a function of frequency can be clarified on a phenomenological basis by Koop’s model of the electrical conduction mechanism in most composite ferrites.