Development and characterization of smart composites reinforced with fibrillated cellulose and nickel-titanium alloy


Yildirim M., Mutlu İ., Candan Z.

International Journal of Biological Macromolecules, vol.267, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 267
  • Publication Date: 2024
  • Doi Number: 10.1016/j.ijbiomac.2024.131189
  • Journal Name: International Journal of Biological Macromolecules
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Keywords: Epoxy resin, Fibrillated cellulose, Nickel-titanium alloy, Smart composites
  • Istanbul Gelisim University Affiliated: Yes

Abstract

The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.