Obtaining plasma parameters by Langmuir probes and optical emission spectroscopy in low-pressure DC plasma


ŞENTÜRK K., Sen T., Coruhlu T., Shahzad A., Aslan N.

Radiation Effects and Defects in Solids, cilt.178, sa.7-8, ss.912-928, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 178 Sayı: 7-8
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/10420150.2023.2195653
  • Dergi Adı: Radiation Effects and Defects in Solids
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.912-928
  • Anahtar Kelimeler: Langmuir probe, low pressure DC plasma parameters, multiple Langmuir probe array, optical emission spectroscopy
  • İstanbul Gelişim Üniversitesi Adresli: Evet

Özet

The plasma environment in low-pressure systems allows coating different materials such as glasses, textiles, metals, etc. at the atomic level. Although vacuum coating is one of the best methods for thin film coating, the coating quality is closely affected by the spatial and temporal non-uniformities inside the reactor. Therefore it is quite important to determine the plasma properties within the chamber. The determination of plasma parameters such as electron temperature, electron excitation temperature, electron and ion densities can be realized using Langmuir probe systems, and by Optical Emission Spectroscopy (OES) by using Boltzmann plot method. Knowing such parameters can provide important information about specific reaction mechanisms, as well as it provides invaluable information that can increase reproducibility in various discharge process control in thin film coating. In this study, a homemade single Langmuir probe (s-LP) and a multiple Langmuir probe system (m-LP) were used to calculate electron temperature, electron density, saturation current, and plasma potential of the plasma at different pressures and at different voltages. One of the objectives of this work was to evaluate the electron temperature and ion density inside the plasma during a coating process. The second objective was to find the spatial change of electron temperature in the axial direction between cathode and anode by m-LP system including 8 independent tips. The last objective was to measure the axial plasma electron temperature distribution inside the vacuum chamber by using OES.