Transportation Planning and Technology, cilt.36, sa.2, ss.170-200, 2013 (SCI-Expanded)
This paper explores the potential capabilities of fuzzy and genetic fuzzy system approaches in urban trip distribution modelling with some new features. First, a simple fuzzy rule-based system (FRBS) and a novel genetic fuzzy rule-based system [GFRBS: a fuzzy system improved by a knowledge base learning process with genetic algorithms (GAs)] are designed to model intra-city passenger flows for Istanbul. Subsequently, their accuracy, applicability and generalizability characteristics are evaluated against the well-known gravity- and neural network (NN)-based trip distribution models. The overall results show that: traditional doubly constrained gravity models are still simple and efficient; NNs may not show expected performance when they are forced to satisfy trip constraints; simply-designed FRBSs, learning from observations and expertise, are both efficient and interpretable even if the data are large and noisy; and use of GAs in fuzzy rule-based learning considerably increases modelling performance, although it brings additional computation cost. © 2013 Copyright Taylor and Francis Group, LLC.