GW-2974 and SCH-442416 modulators of tyrosine kinase and adenosine receptors can also stabilize human telomeric G-quadruplex DNA


Creative Commons License

Salem A. A., El Haty I. A. M., Ghattas M. A.

PLoS ONE, cilt.17, sa.12 December, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 12 December
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1371/journal.pone.0277963
  • Dergi Adı: PLoS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • İstanbul Gelişim Üniversitesi Adresli: Hayır

Özet

GW-2974 is a potent tyrosine kinase receptor inhibitor while SCH-442416 is a potent adenosine receptors’ antagonist with high selectivity towards human adenosine A2A receptor over other adenosine receptors. The two compounds were reported to possess anti-cancer properties. This study aimed to investigate whether stabilization of human telomeric G-quadruplex DNA by GW-2974- and SCH-442416 is a plausible fundamental mechanism underlying their anti-cancer effects. Human telomeric G-quadruplex DNA with sequence AG3(TTAGGG)3 was used. The study used ultraviolet-visible (UV-Vis), fluorescence, fluorescence quenching, circular dichroism (CD), melting temperatures (Tm) and molecular docking techniques to evaluate interactions. The results showed that GW-2974 and SCH-442416 interacted with G-quadruplex DNA through intercalation binding into two types of dependent binding sites. Binding affinities of 1.3 × 108-1.72 × 106 M−1 and 1.55 × 107-3.74 × 105 M−1 were obtained for GW-2974 and SCH-442416, respectively. An average number of binding sites between 1 and 2 was obtained. Additionally, the melting temperature curves indicated that complexation of both compounds to G-quadruplex DNA provided more stability (ΔTm = 9.9∘C and 9.6∘C, respectively) compared to non-complexed G-quadruplex DNA. Increasing the molar ratios over 1:1 (drug:G-quadruplex) showed less stabilization effect on DNA. Furthermore, GW-2974 and SCH-442516 have proven ≥ 4.0 folds better selective towards G-quadruplex over double-stranded ct-DNA. In silico molecular docking and dynamics revealed favorable exothermic binding for the two compounds into two sites of parallel and hybrid G-quadruplex DNA structures. The results supported the hypothesis that GW-2974 and SCH-442416 firmly stabilize human telomeric G-quadruplex DNA in additions to modulating tyrosine kinase and adenosine receptors. Consequently, stabilizing G-quadruplex DNA could be a mechanism underlying their anti-cancer activity.