Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel


Creative Commons License

Abdelkawy M. A., Amin A. Z. M. A., Lopes A. M., Hashim I., Babatin M. M.

Fractal and Fractional, cilt.6, sa.1, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/fractalfract6010019
  • Dergi Adı: Fractal and Fractional
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, INSPEC, Directory of Open Access Journals
  • Anahtar Kelimeler: Fractional-order shifted Jacobi polynomial, Riemann–Liouville fractional derivative, Riemann–Liouville fractional integral, Variable-order fractional integro-differential equation
  • İstanbul Gelişim Üniversitesi Adresli: Hayır

Özet

We propose a fractional-order shifted Jacobi–Gauss collocation method for variable-order fractional integro-differential equations with weakly singular kernel (VO-FIDE-WSK) subject to initial conditions. Using the Riemann–Liouville fractional integral and derivative and fractional-order shifted Jacobi polynomials, the approximate solutions of VO-FIDE-WSK are derived by solving systems of algebraic equations. The superior accuracy of the method is illustrated through several numerical examples.