On Dual Quaternions with k−Generalized Leonardo Components


Creative Commons License

YILMAZ Ç. Z., ŞENTÜRK G. Y.

Journal of New Theory, sa.44, ss.31-42, 2023 (Hakemli Dergi) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2023
  • Doi Numarası: 10.53570/jnt.1328605
  • Dergi Adı: Journal of New Theory
  • Derginin Tarandığı İndeksler: TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.31-42
  • İstanbul Gelişim Üniversitesi Adresli: Evet

Özet

In this paper, we define a one-parameter generalization of Leonardo dual quaternions, namely $k-$generalized Leonardo-like dual quaternions. We introduce the properties of $k$-generalized Leonardo-like dual quaternions, including relations with Leonardo, Fibonacci, and Lucas dual quaternions. We investigate their characteristic relations, involving the Binet-like formula, the generating function, the summation formula, Catalan-like, Cassini-like, d'Ocagne-like, Tagiuri-like, and Hornsberger-like identities. The crucial part of the present paper is that one can reduce the calculations of Leonardo-like dual quaternions by considering $k$. For $k=1$, these results are generalizations of the ones for ordered Leonardo quadruple numbers. Finally, we discuss the need for further research.