16th International Conference on Artificial Neural Networks, ICANN 2006, Athens, Yunanistan, 10 - 14 Eylül 2006, cilt.4132 LNCS - II, ss.963-973
We present a neuro-dominance rule for single machine total weighted tardiness problem with unequal release dates. To obtain the neuro-dominance rule (NDR), backpropagation artificial neural network (BPANN) has been trained using 10000 data and also tested using 10000 another data. The proposed neuro-dominance rule provides a sufficient condition for local optimality. It has been proved that if any sequence violates the neuro-dominance rule then violating jobs are switched according to the total weighted tardiness criterion. The proposed neuro-dominance rule is compared to a number of competing heuristics and meta heuristics for a set of randomly generated problems. Our computational results indicate that the neuro-dominance rule dominates the heuristics and meta heuristics in all runs. Therefore, the neuro-dominance rule can improve the upper and lower bounding schemes. © Springer-Verlag Berlin Heidelberg 2006.